Chaoticity for Multiclass Systems and Exchangeability Within Classes
نویسندگان
چکیده
منابع مشابه
Chaoticity for multi-class systems and exchangeability within classes
We define a natural partial exchangeability assumption for multi-class systems with Polish state spaces, under which we obtain results extending those for exchangeable systems: the conditional law of a finite system given the vector of the empirical measures of its classes corresponds to independent uniform permutations within classes, and the convergence in law of this vector is equivalent to ...
متن کاملChaoticity for multi-class systems and echangeability within classes
Under the natural partial exchangeability assumption for multi-class interacting particle systems, we prove that these converge to an independent system with innite i.i.d. classes if and only if the empirical measure of each class satises a weak law of large numbers. This extension of a classical result for exchangeable systems (related to the de Finetti Theorem) is somewhat surprising, since t...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Intrinsic Chaoticity in Stable Classical Systems and Quantum Fluctuations
We postulate the existence of a universal Keplerian tremor for any stable classical complex system on every scale. Deriving the characteristic unit of action α for each classical interaction, we obtain in all cases α ∼= h, Planck action constant, suggesting that quantization might be connected to an intrinsic chaoticity needed to assure the stability of matter. Introducing temperature, we provi...
متن کاملMulticlass-Multilabel Classification with More Classes than Examples
We discuss multiclass-multilabel classification problems in which the set of classes is extremely large. Most existing multiclass-multilabel learning algorithms expect to observe a reasonably large sample from each class, and fail if they receive only a handful of examples per class. We propose and analyze the following two-stage approach: first use an arbitrary (perhaps heuristic) classificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Probability
سال: 2008
ISSN: 0021-9002,1475-6072
DOI: 10.1239/jap/1231340243